Use of Models

Production Potential Models

What is good habitat for a pelagic fish?

- How can it be quantified and compared...
 - Among species or age class?
 - Across physical and biological gradients?
 - Across time and space?
 - In response to environmental stressors?

Habitat Quality Defined by species-specific vital needs

Habitat Quality = Growth Rate Potential

• Expected daily growth rate of a fish if placed in a volume of water with known conditions such as prey size and density, temperature, oxygen and light

Why Fish Growth Rate?

- Integrative response of fish performance related to survival rates and reproductive capacity
- Based on fish's requirements and prevailing environmental conditions
- Differs among species and life stages
- Varies in time and space
- Nonlinear response to physical and biological factors

Baseline Field Sampling

Baseline Field Sampling

- 7 cruises
 between
 2003 and
 2011
- 140 trawls
- > 4,000 stomachs
- >> 234 h acoustic profiles
- >> 2.5 million data points

Fish Density and Oxygen levels

Mapping EFH: Bluefish

Mapping GRP: Striped Bass

Dissolved Oxygen at 12 M for 2004

Dissolved Oxygen at 12 M for 2010

Gulf of Mexico 2010 Dissolved Oxygen 12M depth

Water Temperature at 12M for 2004

Water Temperature at 12 M for 2010

-92

.-91.50

-90.50

-91

-93. -92.5D

.40 9.20.

9.00.

8.60.

3.40.

3.20.

8.50

-94

-93.50

Next Steps: Leveraging Additional Data

Tools & Products

- Parameterized and validated habitat models for ~ 6 species
- Quantitative habitat maps and annual production potential
 - Data Driven
 - Model driven with Nutrient loading scenarios
- Spatial/temporal indices of fish habitat quality and production

Next Steps: Better Coverage of the Food Web

Current models Potential new species Atlantic croaker Menhaden \bullet • Red snapper Bay anchovy Brown/White • Bluefish • shrimp Striped bass Atlantic bumper exercise 4524

Next Steps: Links to Production

- Incorporate indices of habitat quality in population models
- Conversion of growth to production through body sizefecundity-recruitment relationships

Links to Production: Chinook Salmon

Data base = 37,838 CTD, XBT casts for years spanning 1929 - 2013

Shallow Site -- 2005

Month

Chinook Salmon Growth Rate Potential Across Different Years

GRP as an Index for Production

Support from; NOAA-CSCOR NGOMEX NSF Rapid Response National Academy of Sciences

Area

•

G = growth G = consumption

- R = respiration
- SDA = standard dynamic action
- F = egestion
- U = excretion

Consumption = Growth + Respiration + Wastes

Preliminary Results: Red Snapper

