Synthesis and Integrated Modeling of Long-term Data Sets to Support Fisheries and Hypoxia Management in the Northern Gulf of Mexico

> Dan Obenour (Scientific/Hypoxia PI) Kevin Craig (Applications/Fisheries PI)

Hypoxia Effects on Fisheries Workshop New Orleans, 6 February 2017

Approach

- Historical data synthesis
 - Over 3 decades of available data
 - Multiple collecting agencies
- Data-driven, probabilistic modeling
 - Geostatistical space-time modeling of hypoxia.
 - Bayesian hypoxia model (simple mechanistic).
 - Spatial regression modeling of fisheries data
 - Time series analysis of ecological indicators
- Less emphasis on mechanistic detail

Goals

- New metrics to characterize the year-to-year and intrasesonal variability in hypoxia.
- Evaluation of hypoxia effects on regional fisheries (penaeid shrimp, menhaden) and ecological indicators.
- Improved predictive capabilities and tools for hypoxia and fisheries management.
- Better integration of hypoxia information into fisheries stock assessments and ecosystem analyses.

Outline

- 1. Hypoxia modeling.
- 2. Fisheries and ecological indicators.
- 3. Outreach and application.

Geostatistical hypoxia modeling

- Background
 - In 2013, we provided revised mid-summer hypoxia estimates:

Article

pubs.acs.org/est Terms of Use

Retrospective Analysis of Midsummer Hypoxic Area and Volume in the Northern Gulf of Mexico, 1985–2011

Daniel R. Obenour,^{†,‡,}* Donald Scavia,^{†,‡} Nancy N. Rabalais,[§] R. Eugene Turner,[∥] and Anna M. Michalak[⊥]

- Address biases due to cruise size
- Address biases due to sampling equipment
- Quantify uncertainty
- Estimate thickness and volume (in addition to area)

Geostatistical hypoxia modeling

Characterize large-scale trends

Aggregate results

m 6

Conditional simulation x 1000

Section 1. Hypoxia Modeling

Hypoxic Extents 1985-2011

New estimates (with 95% CI)

- Without instrument bias adjustment
 - Original LUMCON estimates

Geostatistical hypoxia modeling

- Limitations
 - Existing work only provides mid-summer (LUMCON cruise) hypoxia estimates.
- Future work:
 - Space-time geostatistical modeling, incorporating additional cruises by NOAA, TAMU, LUMCON, etc.
 - Use forecasting model output to further address temporal gaps.
 - Develop metrics to characterize severity of hypoxia over entire summer.

Predictive modeling

Expanding temporal coverage

Updated hypoxia metrics

- Different thresholds: 1, 2, 3 mg/L
- Duration of hypoxia
- Area and volume
- Temporally specific
 - June, July, August, etc.
- Spatially specific
 - East shelf, west shelf
 - Near shore, outer shelf

Geospatial Regression Models of Commercial Fisheries

<u>Approach</u>:

- Relate spatially and temporally dynamic fishery responses (catch, effort) to spatially varying environmental conditions
- Account for nonlinearities and correlated effects
- Map the hypoxia effect in space (provide spatially explicit information on fishery response to process-based model)

Source of spatial data on fisheries:

- Electronic logbook data of individual shrimp tows (2005present)
- Penaeid shrimp logbook data (1960-present)
- Menhaden logbook data (1983-present)

Example: Hypoxia Effects on Spatial Distn of Shrimp Fishery

Ecological Indicators of Upper Trophic Level Fish Community

Ecological Indicators

- Biodiversity
- Community abundance and biomass
- Pelagic:demersal ratio
- Average size of demersal fishes

<u>Data</u>

- SEAMAP bi-annual bottom trawl surveys
- Initial predictors: hypoxia severity, fishing pressure
- Potential additional predictors: wetland loss, river flow/nutrient loading

<u>Approach</u>

• Change point analysis: nonlinear time series approach to identify trends and critical thresholds

Outreach Elements

- Annual webinar workshops and meetings at scientific conferences/workshops
- Research blog (beginning in year 2)
- Coordination with fisheries management/ stakeholders

Specific Applications

- Incorporate results into NMFS stock assessment process:
 - Presentations at Data Workshops and for Gulf Fisheries Mgmt Council
 - Langseth et al. (2016) Initial management strategy evaluation incorporating hypoxia effects on Gulf menhaden
- Incorporate results into Gulf Integrated Ecosystem Assessment:
 - Future updates of the Gulf Ecosystem Status Report (currently due in mid 2017)
- Mississippi River/ Gulf of Mexico Hypoxia Task Force:
 - Hypoxia forecasting and extent assessment
 - Evaluation of different monitoring approaches
- Intra-seasonal hypoxia forecasts:
 - Provide to NMFS (e.g., shrimp forecast), sport and commercial fisheries

Section 3. Outreach and Application

