Using ROMS to assess the effects of nutrient load mitigation strategies in the Mississippi-Atchafalaya river plume

A. Laurent and K. Fennel

Department of Oceanography, Dalhousie University, Halifax, Canada
Circulation Model (ROMS)

Location: Northern GoM shelf

Resolution: 3-5 km in horizontal
20 vertical layers
Hypoxia effects on fish and fisheries

Kick-off meeting of decision support tool development

Location: Northern GoM shelf

Resolution: 3-5 km in horizontal
20 vertical layers

Forcing: 3-hourly winds (spatially-resolved);
climatological surface heat and freshwater fluxes

River inputs: daily freshwater input (U.S. Army Corps of Engineers);
monthly nutrient and particulate matter loads (USGS)

Boundary conditions: climatology

Simulation period: 2000 - 2016

Output: Daily 3D field of state variables
(T, S, currents + biological variables)
State variables:
- Nitrate (NO₃; mmol N m⁻³)
- Ammonium (NH₄; mmol N m⁻³)
- Phosphate (PO₄; mmol P m⁻³)
- Phytoplankton (Phy; mmol N m⁻³)
- Chlorophyll (CHL; mg m⁻³)
- Zooplankton (Zoo; mmol N m⁻³)
- Small detritus (SDet; mmol N m⁻³)
- Large detritus (LDet; mmol N m⁻³)
- River DOM (RDOM; mmol N m⁻³)
- Oxygen (O₂; mmol O₂ m⁻³)

River input:
NO₃, NH₄, PO₄ and river DOM

Details available in Fennel et al 2006, GBC; Laurent et al 2012, Biogeosciences; Fennel et al 2013, JGR; Laurent & Fennel 2014, Elementa; Yu et al 2015, Biogeosciences.
Nutrient load experiments

Simulations: 2000 to 2016 with varying TN and TP loads

<table>
<thead>
<tr>
<th>Load</th>
<th>NITROGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

PHOSPHORUS
Nutrient load experiments

Simulations: 2000 to 2016 with varying TN and TP loads

<table>
<thead>
<tr>
<th>Load</th>
<th>NITROGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>100%</td>
<td>Baseline</td>
</tr>
<tr>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

PHOSPHORUS
Observed total nitrogen load used in the **baseline** simulation
Total nitrogen loads used in the nutrient load reduction experiments
Results for baseline simulation

Chlorophyll (mg m⁻³)

Oxygen (mg L⁻¹)

Depth (m)

Latitude (°N)

Longitude (°W)

Jan.01, 2001

Mississippi

Atchafalaya

Hypoxia effects on fish and fisheries
kick-off meeting of decision support tool development
Results for baseline simulation

Chlorophyll (mg m$^{-3}$)

Aug. 18, 2001

Mississippi

Atchafalaya

Latitude (°N)

Longitude (°W)

Depth (m)

Oxygen (mg L$^{-1}$)

Hypoxia effects on fish and fisheries
kick-off meeting of decision support tool development
Results for baseline simulation

Mid summer data (Obenour et al 2013)
Results for baseline simulation
Hypoxia effects on fish and fisheries

Effect of nutrient load reduction

$\bar{H} = 921$

$\bar{H} = 261$

$\bar{H} = 344$

\bar{H}: time-integrated hypoxic area $(10^3 \, \text{km}^2 \, \text{yr})$
Hypoxia effects on fish and fisheries

Kick-off meeting of decision support tool development

Effect of nutrient load reduction

\[\bar{C} = 1946 \]

\[\Delta \text{Chl (mg m}^{-3}\text{)} \]

\[\bar{C} = 1454 \]

\[\bar{C} = 1688 \]

\(\bar{C} \): time-integrated average surface chlorophyll (mg m\(^{-3}\) yr)

DALHOUSSIE UNIVERSITY
Effect of nutrient load reduction

\(\bar{C} = 1946 \)

\(\bar{C} = 1454 \)

\(\bar{C} = 1688 \)

\(\bar{C} \): time-integrated average surface chlorophyll (mg m\(^{-3}\) yr)
Effect of nutrient load reduction

Percent reduction in hypoxic area (\bar{H})

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{H}_{90}</td>
<td>21%</td>
<td>14%</td>
<td>21%</td>
</tr>
<tr>
<td>\bar{H}_{80}</td>
<td>40%</td>
<td>28%</td>
<td>43%</td>
</tr>
<tr>
<td>\bar{H}_{60}</td>
<td>68%</td>
<td>60%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Percent reduction in surface chlorophyll (\bar{C})

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{C}_{90}</td>
<td>5%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>\bar{C}_{80}</td>
<td>10%</td>
<td>8%</td>
<td>9%</td>
</tr>
<tr>
<td>\bar{C}_{60}</td>
<td>22%</td>
<td>19%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Overall effect

Hypoxia effects on fish and fisheries

kick-off meeting of decision support tool development
Effect of nutrient load reduction

Percent reduction in hypoxic area (\bar{H})

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{H}_{90}</td>
<td>21%</td>
<td>14%</td>
<td>21%</td>
</tr>
<tr>
<td>\bar{H}_{80}</td>
<td>40%</td>
<td>28%</td>
<td>43%</td>
</tr>
<tr>
<td>\bar{H}_{60}</td>
<td>68%</td>
<td>60%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Percent reduction in surface chlorophyll (\bar{C})

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{C}_{90}</td>
<td>5%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>\bar{C}_{80}</td>
<td>10%</td>
<td>8%</td>
<td>9%</td>
</tr>
<tr>
<td>\bar{C}_{60}</td>
<td>22%</td>
<td>19%</td>
<td>20%</td>
</tr>
</tbody>
</table>