

Kim de Mutsert, George Mason University; Matthew Campbell, NMFS Mississippi Laboratories; Stephen Brandt and Cynthia Sellinger, Oregon State University; Kristy Lewis, St. Mary's College; Arnaud Laurent, Dalhousie University; Joe Buszowski and Jeroen Steenbeek, Ecopath International Initiative

WEB PAGE

https://demutsertlab.wordpress.com/ngomex/

SUGGESTIONS RESULTING FROM WORKSHOP 1 BREAKOUT SESSIONS:

Ecospace species choices:

-Keep current species list included in the Ecospace model, and add Gulf Butterfish

DONE

SUGGESTIONS RESULTING FROM WORKSHOP 1 BREAKOUT SESSIONS:

Ecospace model area:

- -Develop a new basemap based on newer bathymetry/topography information available since the last iteration of this model
- -Expand the NGOMEX model area slightly to the east to include the east side of the Mississippi River
- -Continue with a 5km² grid, but also create a 10km² grid and a 1km² grid and explore if this changes model output.

MODEL AREA

10m 100m

Image: Joe Buszowksi

RGE MASON UNIVERSITY

SUGGESTIONS RESULTING FROM WORKSHOP 1 BREAKOUT SESSIONS:

Hypoxia scenarios:

- -Develop a scenario of a 20% reduction in Nitrogen load from the Mississippi River
- -Develop a scenario of a nitrogen reduction that would lead to a hypoxic area of 5000 km²

HYPOXIA SCENARIOS

		TN load								
		1000	90%	808	70%	608	50%	40%	30%	20%
	1008	1		2		4				
T P 1	90%)		Ŏ						
	80%			5						
	70%									
	60%					3				
	50%									
a d	40%									
	30%									
	20%									

Image: Arnaud Laurent

1: 100% N and P load represents no action: calibration scenario and base for comparison as a no action scenario

2: 20% reduction in N load

3: 40% N&P reduction: scenario best representing hypoxic area reduction to 5000 km²

4&5: scenario 3 without P reduction and scenario 2 with P reduction GEORGE MASON UNIVERSITY

HYPOXIA SCENARIOS

Scenario 100% N&P: calibration period

Comparison between simulated (black) and observed mid-summer hypoxic area from the LUMCON cruises (red). The 2016 data point is a multi model forecast from NOAA.

Image: Arnaud Laurent

ALIGNMENT WITH SYNERGISTIC PROJECTS

Calibration period:

-All three NGOMEX projects agreed upon focusing on the time period 2000-2016 as a calibration period, to facilitate model output comparison, possible use of each other's output, and/or model linking

Future ideas:

- Use Dan Obenour's work for hypoxia model validation and/or as an additional hypoxia scenario as driver of the Ecospace model
- Use hypoxia scenarios from Dubravko Justic's FVCOM model as driver in Ecospace
 - use high resolution map, and activate nearshore/estuarine areas for which FVCOM output is available
 - Evaluate difference between planned largescale diversions open and closed

OTHER EWE MODEL CHANGES

Inputs:

- -Ecopath biomass for each group recalculated based on 2000-2005 SEAMAP data
- -P/B, and Q/B parameters revised when new information is available
- -Diets revised using GOMEXSI
- -Fishing mortality added as driver using SEDAR reports
- -Fleets and landings reevaluated using NOAAs landings query
- -Temperature and Salinity added as drivers
- -DO response curves revised, salinity and temperature curves added

Next steps:

- -Model balancing (Ecopath)
- -Model recalibration (Ecosim)
- -Loading spatial-temporal DO, Chl a, Temperature, and Salinity layers (Ecospace)
- -Creating validation maps

OTHER DEVELOPMENTS

Conferences:

AFS (August 20-24)

- Assessing Effects of Reduced Nutrients and Hypoxia on Living Resources in the Gulf of Mexico Using a Coupled Ecosystem Modeling Approach. Kim de Mutsert, Stephen Brandt, Kristy Lewis, Arnaud Laurent, Jeroen Steenbeek and Joe Buszowski
- Project/advisory panel meeting with those interested and present?

CERF (Nov 5-9)

- Session accepted: "Ecological and Fisheries Impacts of Hypoxia on Coastal Ecosystems" Session chairs: Kim de Mutsert, Stephen Brandt, Mike Roman, Denise Breitburg, Timothy Targett, Kenny Rose